Tag: humidity gauge
Self-Sustainable Wearable Textile Nano-Energy Nano-System (NENS) for Next-Generation Healthcare Applications
- Filipe
- 0
Wearable electronics presage a future in which healthcare monitoring and rehabilitation are enabled beyond the limitation of hospitals, and self-powered sensors and energy generators are key prerequisites for a self-sustainable wearable system. A triboelectric nanogenerator (TENG) based on textiles can be an optimal option for scavenging low-frequency and irregular waste energy from body motions as a power source for self-sustainable systems. However, the low output of most textile-based TENGs (T-TENGs) has hindered its way toward practical applications. In this work, a facile and universal strategy to enhance the triboelectric output is proposed by integration of a narrow-gap TENG textile with a high-voltage diode and a textile-based switch.
The closed-loop current of the diode-enhanced textile-based TENG (D-T-TENG) can be increased by 25 times. The soft, flexible, and thin characteristics of the D-T-TENG enable a moderate output even as it is randomly scrunched. Furthermore, the enhanced current can directly stimulate rat muscle and nerve. In addition, the capability of the D-T-TENG as a practical power source for wearable sensors is Gentaur Bluetooth Humidity/Temperature Monitoring demonstrated by powering Bluetooth sensors embedded to clothes for humidity and temperature sensing. Looking forward, the D-T-TENG renders an effective approach toward a self-sustainable wearable textile nano-energy nano-system for next-generation healthcare applications.
Using commercial particulate matter sensors, a highly accurate air quality monitoring sensor was designed and calibrated using real world variations in humidity and temperature for indoor and outdoor applications.
Furthermore, to provide a low-cost secure solution for real-time data transfer and monitoring, an onboard Bluetooth module with AES data encryption protocol was implemented.
The wireless sensor was tested against a Dylos DC1100 Pro Air Quality Monitor, as well as an Alphasense OPC-N2 optical air quality monitoring sensor for accuracy. The sensor was also tested for reliability by comparing the sensor to an exact copy of itself under indoor and outdoor conditions.
It was found that accurate measurements under real-world humid and temperature varying and dynamically changing conditions were achievable using the proposed sensor when compared to the commercially available sensors.
In addition to accurate and reliable sensing, this sensor was designed to be wearable and perform real-time data collection and transmission, making it easy to collect and analyze data for air quality monitoring and real-time feedback in remote health monitoring applications.
Thus, the proposed device achieves high-quality measurements at lower-cost solutions than commercially available wireless sensors for air quality.
read more
Read More
Temperature and Humidity Calibration of a Low-Cost Wireless Dust Sensor for Real-Time Monitoring
This paper introduces the design, calibration, and validation of a low-cost portable sensor for the real-time measurement of dust particles within the environment. The proposed design consists of low hardware cost and calibration based on temperature and humidity sensing to achieve accurate processing of airborne dust density.